Operation manual

bIo-mimetic and phyto-techNologies DesIgned for low-cost purificAtion and recycling of water -India-H2O

- 1. Operation Overview of BRO/FO Water Treatment Plant
- 2. Operation flow diagram
 - a. P&ID diagram and its description
 - b. Process block diagram
- 3. Modes of Operation of Plant
 - a. Auto Mode
 - b. Manual Mode
- 4. Operation Procedure of Plant
 - a. Procedure to power ON the PLC Panel, Work Station and VFD panel
 - b. Cleaning mode using Treated Water
 - c. Treated Water Mode ; BRO/FO operating modes Water Purification
 - d. Chemical Wash Mode
- 5. Operation Safety Interlocks
- 6. Graphical User Interfaces
 - a. Graphics Page
 - i. Visualization and storage of processed data
 - ii. Visualization and storage of water quality data
 - iii. Trends / graphs
 - iv. Alarms
 - v. Tanks and pumps
 - vi. Process operation
 - b. Set points for specified process parameters like pressure, flow, TDS etc.
 - i. High level
 - ii. Low level
 - c. Panel controls
 - i. ON/OFF modes
 - ii. Stop
 - iii. Emergency stop
- 7. PLC input and output list from plant to VFD panel
- 8. Operation Safety Procedure
- 9. Various Equipment and Field Instruments
- 10. Flowcharts for various operation control modes and their description
- 11. Ladder diagram their logics and description
- 12. Overall summery and conclusion

3.b Manual mode of operation

Pre-start condition

- 2. No safety interlocks in alarm stage
- 3. System should be operated in manual mode means manually opening- closing of control valves and On-Off control valves
- 4. All emergency push buttons should not be in activated conditions

Steps to operate plant in manual mode

Phase 1: operation of RO and collect the concentrated brine

Phase 2: operation of RO and FO and collect the diluted draw solution for recycle Phase 3: connect the recycle stream to the RO system

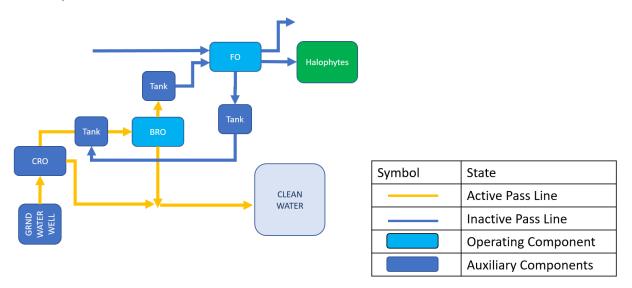
- 1. Turn ON power
- 2. Prepare BRO and FO
 - a. Prepare BRO to pressurization stage
 - i. CV-001 open
 - ii. CV-002 close
 - iii. CV-003 close
 - iv. V1 to E06-T01
 - b. Prepare FO
- 3. Choose the order of starting the modules
 - a. Check LT003
 - i. If LT003> operation value,
 - 1. start FO (go to "FO operation (phase 2)")
 - 2. start BRO (go to "BRO operation (phase 1 and 2)")
 - ii. If LT003< operation value,
 - 1. start BRO (go to "BRO operation (phase 1 and 2)")
 - 2. when LT003> operation value, start FO (go to "FO operation (phase 2)")
 - b. Check LT004
 - i. If LT004>operation value,
 - 1. Start FO (go to "FO operation (phase 3)")
 - 2. Start BRO (go to "BRO operation (phase 3)")
 - ii. If LT004<operation value,
 - 1. Go to option 3a, check LT003, and follow the procedure
- 4. BRO operation (phase 1 and 2)
 - a. Start-up operation

- i. Open Valve V2 and start P01 and P02 (Pump)
- ii. The feed water is pumped to the BRO with the help of P01 and P02. Set the FIC-003 using P01 variable frequency drive as per the setpoint in FT003 (setpoint 0.85 m³/hr)
- iii. Bleed the air bubble from the system
- iv. Stop P01 and P02
- v. Check the piston position (it should be located on the left-hand side for starting pressurization stage)
- vi. Turn on BRO pretreatment (select flow setpoints and start P03, P04, P07)
- vii. Go to pressurization stage
- b. Pressurization stage
 - i. CV-002 close
 - ii. CV-001 open
 - iii. CV-003 close
 - Run P01, FIC003 (setpoint 0.85 m³/hr), and P02, FIC004 (setpoint 1.56 m³/hr)
 - v. If conductivity CT001 < 250mg/l , change position of valve V1 to tank T07.
 - vi. If pressure PT005 > 20 bar or pressure difference between PT004 and PT005 > 0.5 bar, change to purge-and-refill stage
- c. Purge-and-refill stage
 - i. CV-002 open
 - ii. CV-001 close
 - iii. CV-003 open (the high concentrated output of RO directed to the tank T03 using CV-003)
 - Run P01, FIC003 (setpoint 0.85 m³/hr), and P02, FIC004 (setpoint 3.33 m³/hr)
 - v. If piston reaches the end of the PX (ZAL=1), change to pressurization stage
- 5. BRO operation (phase 3)
 - a. Pressurization stage
 - i. CV-002 close
 - ii. CV-001 open
 - iii. CV-003 close
 - iv. Set the FIC003 using P01 variable frequency drive as per the setpoint in FT003, and run P01 and FIC003 (setpoint 1.005 m^3/hr)
 - v. Run P02 and FIC004 (setpoint 1.857 m³/hr)

- vi. If conductivity CT001 < 250mg/l, change position of valve V1 to tank T07.
- vii. If pressure PT005 > 20 bar or pressure difference between PT004 and PT005 > 0.5 bar, change to purge-and-refill stage
- b. Purge-and-refill stage
 - i. CV-002 open
 - ii. CV-001 close
 - iii. CV-003 open (the high concentrated output of RO directed to the tank T03 using CV-003)
 - Run P01, FIC003 (setpoint 1.005 m³/hr), and Run P02,FIC004 (setpoint 3.93 m³/hr)
 - v. If piston reaches the end of the PX (ZAL=1), change to pressurization stage
- 6. FO operation (phase 2)
 - a. Start-up operation
 - i. FO Flushing
 - 1. V3 connecting T07 and P06
 - 2. V4 connecting T07 and P05
 - 3. When constant feed outlet flows (FT005, FT006) have been reached, stop P05 and P06
 - ii. Open V4 to connect T04 with P05
 - iii. Open V3 to connect T03 with P06
 - iv. Turn on FO pretreatment (select flow setpoints and start P09, P10)
 - v. Once a constant feed outlet flow (FT006) has been reached, turn on P06 and CIC004. Select one control option
 - Flow setpoint (0.173 m³/hr) referring to draw inlet flow rate (link to P06)
 - vi. Turn on FIC001. Select one control option
 - Flow setpoint (0.2625 m³/hr) referring to inlet feed flow rate (link to P05)
 - vii. Adjust the inlet flow rate to ensure that both the feed and draw outlet flow rates (FT006 and FT007) never drop below the minimum outlet flow rates (0.05m³/hr)
 - b. Normal operation
- 7. FO operation (phase 3)
 - a. Start-up operation
 - i. Turn on P06 and CIC004. Select one control option

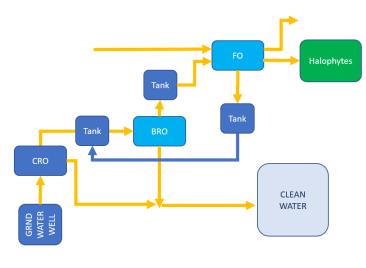
- Flow setpoint (0.204 m³/hr) referring to draw inlet flow rate (link to P06)
- ii. Turn on FIC001. Select one control option
 - 1. Flow setpoint (0.2625 m³/hr) referring to feed inlet flow rate (link to P05)
- iii. Turn on P11 and FIC001 to connect T12 with T01
- iv. Monitor CT008 to reach at 8.65 mS/cm (corresponding to 5.529 g/L)
- v. Adjust the inlet flow rate to ensure that both the feed and draw outlet flow rates (FT006 and FT007) never drop below the minimum outlet flow rates $(0.05 \text{ m}^3/\text{hr})$
- b. Normal operation
 - i. If LT003 < minimum value,
 - 1. Turn off P05, P06, and P11
 - 2. Disconnect T12 with T01
 - 3. Restart FO operation (phase 3) if LT003 > operation value
 - ii. If LT004 < minimum value,
 - 1. Turn off P05, P06, and P11
 - 2. Disconnect T12 with T01
 - 3. Restart FO operation (phase 3) if LT004 > operation value

8. Check the BRO and FO RO pressures reached desired set-points Below are pre – condition checks once the plant is turned ON


Sr	Digital output	Threshold (set-point) reached
No	•	
1	Conductivity CT-xxx	
2	Conductivity CT-xxx	
3		
4		
5	Tank Level Txx	
6	Tank Level Txx	
7		
8		
9	Pressure PT-xx	
10	Pressure PT-xx	
11		
14	Flow rate FT-xx	

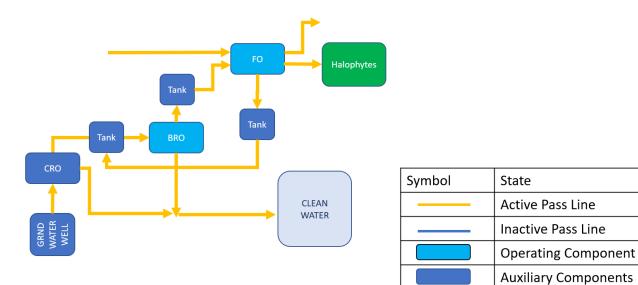
16	Valve conditions, CV-xxx / V1	Open/Close
17	Valve conditions, CV-xxx / V2	Open/Close
18		
19		
20	Pump conditions, SC – xxx	Set value
21	Pump conditions, SC – xxx	Set value

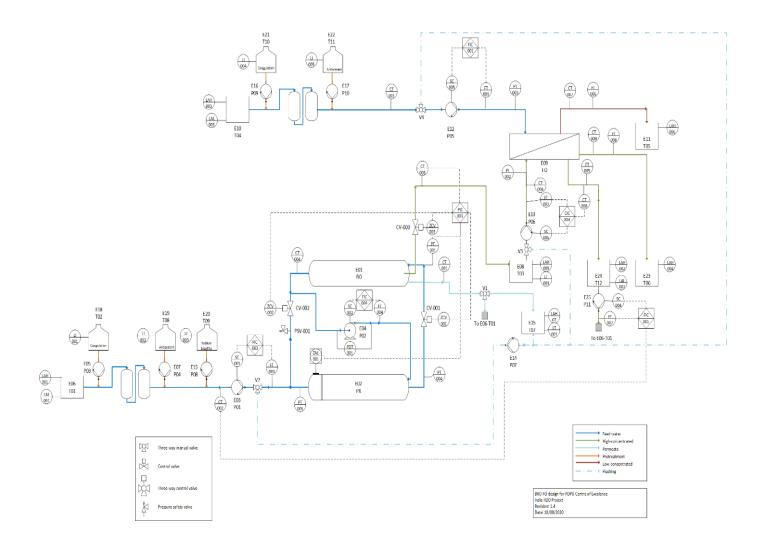
The plant start-up illustrations are given in flow diagrams for phase 1, phase 2 and phase 3


Start-up procedure (phase 1)

Connect the recycling stream and operate the whole system to reach at steady-state.

Start-up procedure (phase 2)


Connect the recycling stream and operate the whole system to reach at steady-state.



Symbol	State
	Active Pass Line
	Inactive Pass Line
	Operating Component
	Auxiliary Components

Start-up procedure (phase 3)

Connect the recycling stream and operate the whole system to reach at steady-state.

	Feed in		Feed out		Draw in	Draw in		Draw out	
	Flow	Fluid	Flow	Fluid	Flow	Fluid	Flow	Fluid	
Wetting	100 L/h	RO	~80L/h	To drain?	100 L/h	RO	~110 L/h	To drain?	
before start- up	< 0.5 bar	permeate / Tap water	< 0.5 bar		< 0.5 bar	permeate / Tap water	< 0.5 bar		
Start up	100 L/h – 200 L/h < 0.5 bar	Phyto- treated Wastewater after pre- treatment	~100L/h – 200 L/h < 0.5 bar	Recycle or to feed out collection?	100 L/h < 0.5 bar	RO permeate / Tap water	~110 L/h < 0.5 bar	To drain?	
Operation	250 L/h – 350 L/h < 1.0 bar	Phyto- treated Wastewater after pre- treatment	50 L/h – 100 L/h < 0.5 bar	To glycophytic crops	200 L/h – 400 L/h < 0.5 bar	Batch-RO retentate	300 L/h – 600 L/h < 0.5 bar	Recycle BRO + halophytic crops	
Acid CIP	100 L/h	pH2-3	~80L/h	Recycle/	100 L/h	pH2-3	~110 L/h	Recycle/	
(if needed)	< 0.5 bar		< 0.5 bar	Waste tank	< 0.5 bar		< 0.5 bar	Waste tank	
Alkaline CIP (if needed)	80 L/h < 0.5 bar	рН9-10	~50L/h < 0.5 bar	Recycle/ Waste tank	300-400 L/h < 0.5 bar	RO permeate / Tap water	~300-400 L/h < 0.5 bar	Recycle/ Waste tank	

Table 1: Recommended flow and pressure ranges

Parameter	Value
Minimum feed flow rate outlet	30-50 L/h
Maximum feed flow rate inlet	900 – 1000 L/h
Maximum shell flow rate inlet	700-800 L/h
Minimum lumen or shell pressure inlet	0.1 – 0.2 bar
Maximum lumen or shell pressure inlet (module limit)	2.5 bar
Maximum lumen pressure inlet (operating limit)	2 bar
Maximum shell pressure inlet (operating limit)	1 bar
Maximum lumen pressure drop	2 bar
Minimum trans-membrane pressure (average feed pressure – average draw pressure)	> 0 bar (positive value)
Maximum trans-membrane pressure	1.5 to 2.0 bar
Maximum operating flux in array with wastewater	10 LMH (*)
Maximum single pass recovery in any array	< 90%
Minimum header sizing for draw outlet	34" - 1" ID for > 4 HFFO14
Maximum operating temperature	35°C
Minimum operating temperature	10°C
Maximum cleaning temperature	40°C
Minimum cleaning temperature	20°C
pH range (Maximum)	2 - 11 (feed side), 2 - 7 (shell side)

Table 2: Recommended limits for operations (*) operating flux is to be investigated during pilot

() operauly	IIUN IS IO DE	i investigateu t	adding pilot

Control	Purpose
Increase draw inlet flow	Increase recovery, increase feed outlet conductivity / TDS
Decrease draw inlet flow	Reduce recovery, prevent over-recovery / potential clogging of fiber, ensure minimum feed outlet flow
Increase feed inlet flow	Reduce recovery, prevent over-recovery / potential clogging of fiber, ensure minimum feed outlet flow
Decrease feed inlet flow	Increase recovery, increase feed outlet conductivity / TDS
Throttling feed outlet - close	Increase feed inlet pressure, ensure feed outlet pressure > draw inlet pressure
Throttling feed outlet - open	Ensure maximum feed pressure < 2.5 bar
Throttling draw outlet - close	Ensure draw inlet pressure is 0.1 - 0.2 bar
Throttling draw outlet - open	Ensure draw inlet pressure < feed outlet pressure

Table 3: Control action suggested during FO process

Practical note:

- -
- -
- Always start feed pump first before draw pump Always stop draw pump first before feed pump Always ensure module is rinsed with RO permeate or tap water at least before stopping both pumps to shut down Always leave outlet valves of feed and draw pump opened to prevent over-pressurizing Always operate higher feed pressure (0.5-1 bar) than draw (0.1-0.5 bar) Never stop both feed and draw pumps while wastewater is still flowing on feed side Never let pH on draw side exceed 8 for current HFFO14 model
- -
- --
- -